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Suppression of Hamiltonian chaos
by Coulomb repulsion in finite-amplitude electroconvection
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The role of Coulomb repulsion in finite-amplitude electroconvection is examined in relation to
the existence of Hamiltonian chaos. It is shown that this Hamiltonian chaos is suppresed for high

enough values of charge density.
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I. INTRODUCTION

There has been a long interest in electroconvection due
to unipolar injection because of its theoretical and prac-
tical importance [1-3]. Experimental studies have shown
that small fluctuations of the electrical current around
its mean value are always present. The power spectra of
electrical current indicate the existence of temporal chaos
[4,5].

A theoretical attempt to explain this behavior was
made in [6]. In that paper, the effect of a time-dependent
velocity on the charge carriers trajectories in the case of
very weak injection was studied. The ion trajectories cor-
respond to the orbits of a Hamiltonian system and Mel-
nikov’s method was used to demonstrate the existence of
Hamiltonian chaos.

In this Brief Report we study the case when injection
is not weak enough to neglect Coulomb repulsion.

II. FORMULATION OF THE PROBLEM

Consider a dielectric liquid of permittivity €, confined
between two conducting parallel plates a distance d apart
with an applied voltage difference ®; between them. In-
jection takes place from one of the plates where a charge
density qo is assumed to exist. When equations are put
in nondimensional form taking as units d for distances,
®¢/d for the electric field, e®o/d? for the charge density,
and K®,/d for the velocity (K is the ion mobility), the
charge conservation equation is written

99

8t+(u+E)'Vq+q2:0, (1)

where u is the liquid velocity, E the electric field, and

q the charge density. The electric field is related to the
charge density through Poisson’s equation
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V-E=q. (2)

The boundary conditions for these two equations are
fol E-dr =1 and g = C at z = 0. The coordinate system
is chosen in such a way that the injecting electrode is at
z = 0 and the collector at z = 1.

The parameter C = god?/e®, is a measure of the in-
jected charge. The term g2 in Eq. (1) represents the de-
crease of charge in a parcel of fluid due to the Coulomb
repulsion between ions. When injection is very weak
(C < 1) this term is negligible.

We assume that the fluid motion is two dimensional
and in the form of a self-similar roll: w = Awug, with
max |ug|] = 1. We also introduce the stream function
Uo(z,z) = (L/27)(1 — cos 2mz) sinwz /L, such that

Y,
Uo = 9z ' (38.)
Y,
= 3b
wo oz (3b)

Here L is the half length of a convective cell, which we
assume to be 0.66 [3].

Equation (1) is equivalent to the following set of ordi-
nary differential equation:

dg 2
= _ _ 4
- (4a)
dz = Aug(z,2) + E., (4b)
dt
d
d—i = Awo(z,z) + E.. (4c)

When Coulomb repulsion is neglected, Eq. (4) can be
written in the form of Hamilton’s equations

do _ OH (52)
dt 0z
dz  8H
P (5b)
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FIG. 1. Equilibria (P,, P;, and P3), separatrix, and typical
trajectories for a non-time-dependent amplitude.

where H(z,2) = —z + A¥y(z, 2).

Typical trajectories are shown in Fig. 1 for a constant
amplitude A > 1. The system has three equilibrium
points Py, P, and P3;. There are two types of orbits:
those that appear as closed curves and those that con-
nect both electrodes. The regions containing each type
of trajectories are separated by a heteroclinic orbit con-
necting the pair of saddle points. This special orbit is of
particular interest. As ions emitted at the injector cannot
reach the region containing the closed curves, this region
appears empty of charge. The heteroclinic, or separatrix,
separates the charged and noncharged zones.

An analytical solution for this system was obtained
in the case A ~ 1. Defining z* = z/L, z* = z — 1/2,
t* = n%t, A* = (A —1)/n?, and H* = H/n%L, a Taylor
expansion of H* gives

H=o(4-5-7), 0

where asterisks have been omitted.

The behavior of the carrier trajectories when the ve-
locity amplitude is perturbed with a periodic fluctua-
tion A = Ap + €sinQt is then studied using Melnikov’s
method. In particular, Melnikov’s function is computed
to be

VérQ sin Qtg

Mto) = — 2 cosh(Qr/4vVA)

(7)

Note that the parameter € is now included in the def-
inition of Melnikov’s function. Since this function has
an infinity of simple zeros, the main conclusion is that a
chaotic layer connecting the injector with the otherwise
charge-free region is always present. This chaotic layer
produces a mixing of charge modifying the steady-state
charge distribution.

In [6] it was conjectured that this chaotic behavior of
the ion trajectories might be at the basis of the chaotic
fluctuations of the electrical current that have been ob-
served experimentally [5].

III. ROLE OF COULOMB REPULSION

When injection strength is weak but not negligible
(C < 1) the Coulomb repulsion between ions has to be

taken into account. This has two consequences. First,
along the ions trajectories the charge density is no longer
constant, but it decreases according to ¢ = go/(1 + got).
On the other hand, the electric field is not constant,
V - E = q, and the system (4) is not conservative.

We consider Egs. (4b) and (4c) with an electric field
E = e, + 6E, where V-6FE = q. Near z = 0, z =
1/2 we expand 0 F in a Taylor series: §E, = Caz and
0E, = C(b+ ez); this is consistent with the boundary
conditions for the electric field: E, = 0 at £ = 0 and
62=0atz2=0,1.

The coefficients a and e are related to the charge in the
inner region ginner = V-6 E = C(a+e). As the mechanism
that introduces charge in this region is a laminar chaotic
mixing, ginner is a complicated function of A(t). As a first
approach we will consider a and e as constants. This is
equivalent to considering an average charge in the inner

region.
From
dx
i —2zz 4 Caz, (8a)
dz . 2,
= = —A-esin() + - +27+ Clb+ez), (8b)

we compute Melnikov’s function in the same way as it is
done in [7,6,8]. We obtain

VerQ cos Qtg _ V6
2 cosh(Qm/4VA) 2

M(to) =¢€ 7rAqinner- (9)

From this equation it is clear that M (o) has no simple
zeros when @inper is greater than a certain value. Hence
Coulomb repulsion can break the heteroclinic tangle and
suppress the chaotic behavior of the ion trajectories near
the separatrix.

It is possible to obtain an upper bound to the charge
in the inner region. As we have said, the mechanism
that introduces charge in the inner region is that a non-
steady amplitude breaks the separatrix giving place to
a chaotic layer that mixes charge between the inner and
outer regions. When M (to) = 0 the stable and unstable
manifolds corresponding to the two saddle points inter-
sect transversely. These intersections define lobes in the
manifolds. These lobes are sketched in Fig. 2. After a

X

FIG. 2. Heteroclinic tangle. The lobe L maps into the lobe
L' after one period of the amplitude oscillations.
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period, the lobe L is mapped into the lobe L’ introduc-
ing charge in the inner region. The succesive mapping
of one lobe into others mixes the charge over the whole
separatrix layer. A rough estimation of the charge in the
inner layer is then
S

Qinner =~ Css ) (10)
where S; is the area of one lobe (as the mapping is area
preserving when C' = 0 this area is the same for all lobes)
and S, is the area of the unperturbed inner region. This
will be an upper bound because the charge will decrease
with time due to Coulomb repulsion [see Eq. (4a)].

The area of one lobe is given by

tnit
S = M(t) dt, (11)

tn

where t,, and t,4, are two consecutive zeros of M (t).

When C = 0 we have

1
S =eVbrQ——m8 12
: cosh(Qr/4v A) (12)
Also S, = v/6A and substituting in (10) is
CenQ) ! (13)
inner & C €T .
1 Acosh(Qn/4v A)

This is consistent with the numerical results in [6] where
the inner region appears more charged for values of 2
at which the amplitude of Melnikov’s function is a max-
imum [cf. [6], Eq. (27)].

Melnikov’s function is finally

V6rQ 1

Mto) = ¢ 2 cosh(Qr/4v/A)

[sin(Qto) — 2C], (14)

which has no zeros if C > 0.5.

IV. CONCLUSION

We have studied the charge-carrier trajectories when
the liquid velocity is a periodic function of time and
Coulomb repulsion is taken into account. It has been
shown that for C > 0.5 Melnikov’s function has no ze-
ros. Therefore, for these values of C there is not hetero-
clinic chaos. From this we can conclude that the time-
dependent behavior of the electrical current found experi-
mentally for high values of C cannot be due to the chaotic
dynamics of the ion trajectories near the separatrix.

For strong injection (high C) the chaotic behavior of
the system may be due to the coupling between charge
and velocity that appears because of the existence of a
Coulomb force in the volume. This coupling may origi-
nate an energy interchange between modes analogous to
that appearing in other fluid dynamics problems, e.g.,
the Rayleigh-Bénard problem. However, the presence of
strong gradients in the spatial distribution of the charge
density makes a modal expansion of the problem ex-
tremely difficult.
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